Non-canonicity of Mv-algebras
نویسندگان
چکیده
The varietyMV of all MV-algebras is shown to be non-canonical in a strong sense. Specifically it is shown that the canonical extension of the Chang algebra, K2, is not an MV-algebra. As a consequence, no non-finitely generated variety of MV-algebras is canonical.
منابع مشابه
A new approach to characterization of MV-algebras
By considering the notion of MV-algebras, we recall some results on enumeration of MV-algebras and wecarry out a study on characterization of MV-algebras of orders $2$, $3$, $4$, $5$, $6$ and $7$. We obtain that there is one non-isomorphic MV-algebra of orders $2$, $3$, $5$ and $7$ and two non-isomorphic MV-algebras of orders $4$ and $6$.
متن کاملStudy of canonical extensions of BL-algebras
Canonical extensions of lattice ordered algebras provide an algebraic formulation of what is otherwise treated via topological duality or relational methods. They were firstly introduced by Jónsson and Tarski for Boolean algebras with operators (see [8] and [9]) and generalized for distributive lattices with different operations in [5], [4] and [3]. If A = (A, {fi, i ∈ I}) is a distributive lat...
متن کاملNew Results on Ideals in $MV$-algebras
In the present paper, by considering the notion of ideals in $MV$-algebras, we study some kinds of ideals in $MV$-algebras and obtain some results on them. For example, we present definition of ultra ideal in $MV$-algebras, and we get some results on it. In fact, by definition of ultra ideals, we present new conditions to have prime ideals, positive implicative ideals and maximal ideals in $MV$...
متن کاملf-DERIVATIONS AND (f; g)-DERIVATIONS OF MV -ALGEBRAS
Recently, the algebraic theory of MV -algebras is intensively studied. In this paper, we extend the concept of derivation of $MV$-algebras and we give someillustrative examples. Moreover, as a generalization of derivations of $MV$ -algebraswe introduce the notion of $f$-derivations and $(f; g)$-derivations of $MV$-algebras.Also, we investigate some properties of them.
متن کاملSplitting methods in algebraic logic in connection to non-atom–canonicity and non-first order definability
We deal with various splitting methods in algebraic logic. The word ‘splitting’ refers to splitting some of the atoms in a given relation or cylindric algebra each into one or more subatoms obtaining a bigger algebra, where the number of subatoms obtained after splitting is adjusted for a certain combinatorial purpose. This number (of subatoms) can be an infinite cardinal. The idea originates w...
متن کامل